

In-Depth Investigation of Analytical Methods for the Determination of sildenafil citrate and Tramadol hydrochloride in Synthetic mixture: a Review

Yuvrajsinh solanki, Priyanka malani, Dr Umesh Upadhyay

Submitted: 05-05-2023

Accepted: 15-05-2023

ABSTRACT

Sildenafil citrate and Tramadol hydrochloride used in treatment of Premature ejaculation. Tramadol HCl is thought to exert its therapeutic action in PE patients through one or more of the following mechanisms: weak µ-opioid effect, 5-HT2 receptor antagonist effect, N-methyl-D-aspartate receptor antagonist effect, serotonin and norepinephrine reuptake inhibitory effect, and acetylcholine receptor antagonist effect. On the other hand, Sildenafil citrate is thought to play a therapeutic role in treating PE though the following mechanisms: peripheral delay of ejaculation through modulation of contractions of the vas deferens, seminal vesicles, prostate and urethra, increasing the duration of erection, central decrease of the sympathetic output via modulation of NO activity in the medial pre-optic area, peripheral analgesic effect, peripheral analgesic effect. increasing patient confidence, and improving the perception of ejaculation control and sexual satisfaction.

I. INTRODUCTION^[1-3]

- premature ejaculation (PE) is one of the most \geq common male sexual disorders and has been estimated to occur in 4-39% of men in the general community.The World Health (WHO) 2nd Organization International Consultation on Sexual Health defined it as "...persistent or recurrent ejaculation with minimal stimulation before, on or shortly after penetration and before the person wishes it, over which the sufferer has little or no voluntary control which causes the sufferer and / or his partner bother or distress..."Ejaculation occurs during partnered sexual activity within approximately 1 minute following vaginal penetration and before the individual wishes it, during all or almost all sexual activity (75% to 100% of the time).
- Ejaculation occurs during partnered sexual activity within approximately 1 minute following vaginal penetration and before the

individual wishes it, during all or almost all sexual activity (75% to 100% of the time). Symptoms must persist for at minimum 6 months and cause clinically significant distress to the individual. The dysfunction is not explainable by a nonsexual mental disorder, medical conditions, the effects of a drug or medication, or severe relationship distress, or other significant stressors.

Premature ejaculation is treated with different types of medicines like Daily treatment with selective serotonin reuptake inhibitors, Ondemand treatment with selective serotonin reuptake inhibitors, On-demand treatment with tramadol, Anaesthetic topical ointments, Phosphodiesterase inhibitors.

Fig 1: - chemical structure of sildenafil citrate

Fig 2: - chemical structure of tramadol hydrochloride

INTRODUCTION OF SILDENAFIL CITRATE^[4]

Sildenafil was the first phosphodiesterase-5 (PDE5) inhibitor approved for usein erectile

dysfunction by US Food and Drug Administration on March 27, 1998. Method for determination of sildenafil citrate official methods.(Table 1)

MECHANISM OF SILDENAFIL CITRATE^[4]

Sildenafil is a selective inhibitor of cGMP-specific phosphodiesterase (PDE-5). Penile erection involves relaxation of the corpus cavernosum, an event mediated by NO and cGMP. The biological actions of cGMP are terminated by phosphodiesterase enzymes and PDE-5 is the major cGMP metabolizing enzyme in this tissue.

INTRODUCTION OF TRAMADOL HYDROCHLORIDE^[5]

Tramadol is a centrally-acting opioid agonist and SNRI (serotonin/norepinephrine reuptake inhibitor) used for the management of moderate to severe pain in adults. It is considered a class IV drug by the FDA in July 7th, 2014. Method for determination of tramadol hydrochloride official methods.(Table 2)

MECHANISM OF TRAMADOL HYDROCHLORIDE^[5]

Tramadol is an opioid and, like other opioids, selectively bind to different opiate receptors in the central nervous system. The liver enzyme, CYP2D6, converts tramadol to its active metabolite M1, which has a stronger affinity for the mu receptor compared to the inactive form. Tramadol does not bind to the mu receptor as much as morphine. Unlike other opioids, tramadol does not reverse its course completely after the administration of naloxone. Along with the partial agonist activity on the opioid receptors, it also inhibits the reuptake of serotonin and norepinephrine.

Table no.1 official method for sildenafil citrate			
SR.NO	Official Method	Description	Reference
1	HPLC(USP2021	Mobile phase: Buffer: Methanol: Acetonitrile	6
	NF39)	(58:25:17% v/v/v)	
		Flow rate: 1mL/min	
		Injection volume: 20 µL	
		Detection wavelength: UV 290nm	
2	HPLC(BP 2020	Stationary phase: End-capped octadecyl	7
	VOLUME 2)	silyl silica gel for chromatography R	
		(0.25m×4.6mm,5µm)	
		Mobile phase: –	
		<u>Mobile phase A</u> : Acetonitrile for	
		chromatography R, Buffer solution (20:80 %	
		V/V)	
		Mobile phase B: Buffer solution: Methanol	
		R1: Acetonitrile: Chromatography R	
		(20:20:60% V/V/V)	
		Flow rate: 1.5 mL/min	
		Injection volume: 10 µL	
		Detection wavelength: 230 nm.	
3	HPLC(IP volume 3	Stationary phase: A stainless-steel column	8
	2018)	25 cm x 4.6 mm, packed with	
		octadecylsilane bonded to porous silica (5 μ g)	
		(such as Hypersil ODS)	
		Mobile phase: A. dissolve 3.85 g of	
		Ammonium acetate in 1000 ml of Water,	
		adjusted to pH 7.5 with Ammonia solution	
		B. Acetonitrile	
		Flow rate: - 1 mL/min	
		Injection volume: 20 µL	
		Detection wavelength: 240 nm.	-
4	HPLC(EP2017)	Stationary phase: End-capped octadecyl	9
		silyl silica gel for chromatography R	
		(0.25m×4.6mm,5µm)	

Mobile phase: –
Mobile phase A: - Acetonitrile for
chromatography R: Buffer solution (20:80 %
V/V),
Mobile phase B: - Buffer solution, methanol
R1, Acetonitrile for chromatography R
(20:20:60% V/V/V)
Flow rate: - 1.5 mL/min
Injection volume: 10 µL
Detection wavelength: 230 nm.

SR NO	Method	Description	Reference
1	HPL CIUSP2021(NF30)]	Stationary nhase: 16-	10
1		mm×25cm:5umpackingI 1	10
		Mohile phase Acetonitrile	
		Solution A (30.70) %v/v	
		Solution A: Dissolve 2 mL of	
		Trifluoroacetic acid in 1000 mJ of	
		water	
		Flow rate: 1 ml/min	
		Injection volume: 20 µL	
		Detection wavelength · 210 nm	
2	HPL C(IP 2021)	Stationary nhase: A stainless steel	11
-		column nacked with octylsilanized	**
		silica gel	
		(4×25, 5µm)	
		Mobile phase: A mixture of Diluted	
		Trifluoroacetic acid (1 in 500)	
		Acetonitrile (141:59)%v/v	
		Flow rate: Adjust so that the	
		retention time of tramadol is	
		about 5 minutes	
		Detection wavelength: 270 nm	
3	HPLC(BP 2020 Vol. 2)	Stationary phase: End-capped base-	12
-	(,	deactivated octvl silvl silica gel for	
		chromatography	
		(0.25m×4.6mm,5µm)	
		Mobile phase: Acetonitrile:	
		295 volumes of Acetonitrile R :705	
		volumes of a mixture of 0.2 mL of	
		Trifluoroacetic acid R :100 mL of	
		Water R.	
		Flow rate: 1 mL/min	
		Injection volume: 20 μL	
		Detection wavelength: 270 nm.	
4	HPLC(IP 2018 Vol.3)	Stationary phase: Stainless	13
		steel column 25 cm x 4.0 mm packed	
		with end capped octyl silane bonded	
		to porous silica (5 μm)	
		Mobile phase: A mixture of 29.5	
		volumes of Acetonitrile	
		: 70.5 volumes of a mixture of 0.2 ml	
		of Trifluoroacetic	

		acid: 100 ml of Water	
		Flow rate: 1 mL/min	
		Injection volume: 20 μL	
		Detection wavelength: 270 nm.	
5	HPLC(EP 2017)	Stationary phase: End-capped base- 14	
		deactivated octyl silyl	
		silica gel for chromatography R	
		(5μm).	
		Mobile phase: 295 volumes of	
		Acetonitrile R and 705 volumes of a	
		mixture of 0.2 mL of Trifluoroacetic	
		acid R and 100 mL of water R.	
		Flow rate: 1 mL/min	
		Injection volume: 20 µL	
		Detection wavelength: 270 nm.	

Table no.3 : Methods for determination of sildenafil citrate and Tramadol hydrochloride single and combination with other drugs by UV Spectroscopy, chromatography and other techniques.

Sr no	Method	Description	Reference
1	Validation of Simple and Rapid UV-Spectrophotometric Method with Stress Degradation Study For Sildenafil Citrate	Solvent: Methanol Linearity: 10-50 μL Detection wavelength: 228 nm	15
2	Development of analytical method and its validation for sildenafil citrate by UV Spectrophotometry	Solvent: HCL(0.1N) Linearity: 8-60 μL Detection wavelength :293.2 nm	16
3	UV-analytical method development and validation for simultaneous estimation of dapoxetine hydrochloride and sildenafil citrate in tablet dosage form	Solvent: Methanol Linearity: 10-60 μg/mL Sildenafil citrate: 2-12 μg/mL Dapoxetine hydrochloride: 2-12 μg/mL Detection wavelength: Sildenafil citrate:293nm Dapoxetine hydrochloride:231 nm	17
4	Development and Validation Method for the Determination of Sildenafil Citrate Tablets by using UV-Spectrophotometer in Pharmaceutical Formulation	Solvent: HCL Linearity: 5-40 μg/mL Detection wavelength: 295 nm	18
5	Development and Validation of UV Spectrophotometric Area Under Curve (AUC) Method for Sildenafil Citrate in Pharmaceutical Formulation	Solvent: Water Linearity: 5-30 μg/mL Detection wavelength: 295 nm	19
6	A Simple Spectrophotometric Assay of Sildenafil in Pure and Pharmaceutical Preparations	Solvent: Methanol Linearity: - 3-70 mg /L (3-70 μg/mL) Detection wavelength: 410 nm	20

7	Development of new and rapid method for UV spectrophotometric Determination of sildenafil in marketed formulations	Solvent: HCL Linearity:4-10 μg/ml Detection wavelength:233.6 nm	21
8	Validated HPLC method for determination of sildenafil in pharmaceutical dosage forms	Stationary phase: Hypersil BDS- C18 (125 x 4 mm, 5 mm) Mobile phase: Phosphate buffer (20 mM, pH 2.8)-Acetonitrile (71:29, % V/V) Flow rate: 1.5 mL/min Injection volume: 25 μL Detection wavelength: 285 nm.	22
9	HPLC determination of Sildenafil in tablets	Stationary phase:LiChrosorb RP-18 (150 x 4.0 mm, 5μm)Mobile phase:Acetonitrile:Methanol:0.5%Triethylamine (15:26:59%v/v/v)Flow rate:1ml/minInjection volume:20µLDetection wavelength:290 nm.	23
10	Development and validation of RP-HPLC method for sildenafil citrate in rat plasma- application to pharmacokinetic studies	Stationary phase: C18 columnMobile phase: Methanol: Water(85:15 % v/v).Flow rate:1ml/minInjection volume: 20 μLDetection wavelength: 230 nm.	24
11	RP-HPLC Method Development for Estimation of Sildenafil Citrate in Tablets and in Seminal Fluid	Stationary phase:Waters Spheris orb C18 bondedsilica, (5 μm, 4.6 x 250 mm)Mobile phase:Trifluoroacetic acid (0.2%) (pH 3adjusted with Orthophosphoric acid):Acetonitrile (60:40% v/v)Flow rate: 1.0mL/minDetection wavelength:230 nm	25
12	Analytical Method Development and Validation of Sildenafil Citrate by RP HPLC ABS TRACT	Stationary phase: C18 column [C18,250 X 4.6mm, 5μ]Mobilephase:Acetonitrile:Phosphate buffer (35:65 % v/v)Flow rate:1mL/minDetection wavelength:230 nm	26
13	New simple RP-HPLC Method for the estimation of Sildenafil citrate in Pharmaceutical dosage form	Stationary phase:C18 Column (150 X 4.6 mm, 5μparticle size)Mobile phase: Methanol and Buffer(50:50 % v/v)Flow rate: 1.5 mL/minDetection wavelength: 290 nm	27
14	Validation and stability indicating RP-HPLC method for the Determination of Sildenafil citrate in Pharmaceutical	Stationary phase: C18 Column (150X 4.6mm, 5μ particle size)Mobilephase:Acetonitrile:Phosphatebuffer(70:30, % v/v,	28

	Formulations	pH7.0) Flow rate: 0.8ml/m Detection wavelength: 228 nm	
15	Stability indicating HPLC method for Simultaneous Quantification of Sildenafil citrate and Dapoxetine hydrochloride in Pharmaceutical Products	Stationary phase: C18(150x4.6mmID, 5μm)Mobile phase: Acetonitrile and0.2M ammonium acetate bufferFlow rate: 1.2ml/minInjection volume:25μLDetection wavelength: 228 nm	29
16	Development and Validation of HPTLC Method for Simultaneous Estimation of Sildenafil Citrate and Dapoxetine Hydrochloride in Combined Dosage Form	Stationary phase: Silica gel 60 F254Mobile phase: Hexane: Methanol:Diethyl amine 9.2:1.6:1.2 (% v/v/v)Detection wavelength: 241nm R_f Value :Sildenafil citrate: 0.21 ± 0.02 Dapoxetine Hydrochloride: 0.72 ± 0.02	30
17	Method development and validation of visible spectroscopic method for the estimation of tramadol hydrochloride in pure and bulk dosage form	Solvent: Water Linearity: 10-50µg/ml Detection wavelength: 749 nm	31
18	Development of UV spectrophotometric methods and validation for Estimation of Tramadol hydrochloride in bulk and Tablet dosage form by Absorbance maxima and area under the curve method	Solvent: Methanol:Water (60:40 % v/v) Linearity: 30-150µg/ml Detection wavelength: 271 nm	32
19	Validated UV spectrophotometric method for quantitative analysis of Tramadol in bulk and pharmaceutical dosage form	Solvent: Water Linearity: 10-50 μg /mL Detection wavelength: 273.5 nm	33
20	Analytical Method Development and Validation of Tramadol Hydrochloride by Pharmaceutical Dosage Form by Ultraviolet Spectroscopy	Solvent: 0.1N HCL Linearity: 20-160 µg/ml Detection wavelength: 270nm	34
21	Validated Spectrophotometric Method for the Determination of Paracetamol and Tramadol Hydrochloride in Tablet dosage form	Solvent: Water Linearity: 2-14 µg/ml Detection wavelength: <u>Paracetamol:</u> 264 nm <u>Tramadol:</u> 224.06nm	35
22	UV spectrophotometric method for Simultaneous Estimation of Tramadol hydrochloride and Aceclofenac in bulk and tablet dosage form	Solvent:Methanol:Water $(60:40)\% v/v$ Linearity: $5-30 \mu g/ml$ Detection wavelength:Tramadol hydrochloride:	36

214.8 nm Aceclofenac: 275.6 nm

 Development and validation of UV spectrophotometric Methanol of Tramadol hydrochloride and Quercetin in niosome formulation Validated spectrophotometric Method for Simultaneous Estimation of Paracetamol, Detection wavelength: <u>Tramadol</u> <u>HC1</u>; 271nm Validated spectrophotometric Method for Simultaneous Estimation of Paracetamol, Detection wavelength: <u>Domperidoneand Tramadol HC1</u>; 271nm Development and validation of <u>Varacetamol</u>, <u>2256 nm</u>, <u>Domperidone: 289.6 nm</u>, <u>Tramadol</u>; 2518.4 nm Method II: 200-400 nm Development and validation of <u>Accelofenas; 225 μg/mL</u>. <u>Detection wavelength: <u>Method II: 200-400 nm</u></u> Development and validation of <u>Accelofenas; 235 μg/mL</u>. <u>Tramadol</u>; 241 nm Determination of Dexibuprofen and Tramadol HCL by spectroscopic method for multianeous UV spectroscopic method for Estimation of Tramadol; 241 nm Development and validation of <u>Tramadol</u>; 201 20µg/mL. <u>Detection wavelength: <u>Accelofenas; 203 nm</u> <u>Tramadol; 241 nm</u></u> Development and validation of <u>Tramadol</u>; 201 20µg/mL. <u>Detection wavelength: <u>Accelofenas; 203 nm</u> <u>Tramadol; 241 nm</u></u> Development and validation of <u>Tramadol</u>; 241 nm Development and validation of <u>Tramadol; 241 nm</u> <u>Tramadol; 241 nm</u> <u>Tramadol; 241 nm</u> <u>Tramadol; 241 nm</u> Development and validation of <u>Tramadol; 250 x 4.6 nm</u>, 5µ) Mobile phase: SmM Ammonium acetate buffer (pH 4.0 ± 0.3): <u>Accentitile; 105 x 85 w/v</u>). <u>Prov rate; 100, 100 min Injection vavelength; 275 nm.</u> RP-HPLC Determination and Walidation of Tramadol hydrochloride an Capsules within <u>Diversion wavelength; 275 nm</u>. RP-HPLC Method for Estimation of Tramadol hydrochloride an Capsules aform <i>Sultion (25:75) w/v</i>. <u>Prov rate; 1 mL/nin Injection volume; 20 µL</u> RP-HPLC Method for Estimation of Tramadol hydrochloride an Capsules aform <i>Sultion volume; 20 µL</i> 				
 Validated spectrophotometric Methods for Simultaneous Estimation of Paracetamol, Domperidoneand Tramadol HCI in Domperidoneand Tramadol HCI in pure and tablet dosage form Method 1: <u>Paracetamol</u>. :256 nm, <u>Tramadol</u>, <u>Pure 289.6 nm, <u>Tramadol</u>, <u>Pure 299.6 nm, <u>Tramadol</u>, 2-10 µg/mL</u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u> Development and validation of Method II: 200-400 nm Determination of Dexibuprofen and Tramadol, Pure 2012, <u>Pure 100, 200.6 nm, <u>Tramadol</u>, 2-10 µg/mL</u> Determination of Dexibuprofen and Tramadol, Pure 2012, <u>Pure 100, 200.6 nm, <u>Tramadol</u>, 2-10 µg/mL</u> Determination of HCL by simultaneous UV spectroscopic <u>Development and validation of RP-HPLC method for Estimation of Tramadol in extended release table pharmaceutical dosage form <u>Stationary phase: Zorbax C18 (150 X4.6 nm, 5µ)</u></u> Development and validation of Hobile phase: Acetonitrile (15: 85 % v/v). Flow rate: 0.8 mL/min <u>Injection volume: 20 µL</u>. Detection wavelength: 270 nm. BHPLC Determination and Hydrochloride in Capsules Pure 20 µL. Detection volume: 20 µL. Detection volume: 20 µL. Detection volume: 20 µL. Detection volume: 20 µL. 	23	Development and validation of UV spectrophotometric Method for Simultaneous Estimation of Tramadol hydrochloride and Quercetin in niosomes formulation	Solvent: Methanol Linearity: 0 – 20 μg/ml and 2-20 μg/ml Detection wavelength: <u>Tramadol</u> <u>HCl:</u> 271nm Quercetin (Dihydrate): 372 nm	37
 25 Development and validation of UV Visible spectrophotometric method for estimation of Accelofenac and Tramadol in bulk and dosage form 26 Determination of Dexibuprofen and Tramadol HCL by simultaneous UV spectroscopic method from bulk and pharmaceutical dosage form 27 Development and validation of RP-HPLC method for Estimation of Tramadol in extended release tablet pharmaceutical dosage form 28 HPLC Determination and Validation of Tramadol Hydrochloride in Capsules 29 RP-HPLC Method for Estimation of Tramadol in Capsules 20 RP-HPLC Method for Estimation of Tramadol in Capsules 21 Determination of Tramadol Hydrochloride in Capsules 22 RP-HPLC Method for Estimation of Tramadol in Capsules 23 HPLC Determination and Validation of Tramadol Hydrochloride in Capsules 24 HPLC Method for Estimation of Tramadol in Pharmaceutical formulation 25 HPLC Method for Estimation of Tramadol in Capsules 26 HPLC Method for Estimation of Tramadol in Pharmaceutical formulation 27 RP-HPLC Method for Estimation of Tramadol in Capsules 28 HPLC Determination and Validation of Tramadol Hydrochloride in Capsules 29 RP-HPLC Method for Estimation of Tramadol hydrochloride and Paracetamol in Pharmaceutical formulation 20 RP-HPLC Method for Estimation of Tramadol hydrochloride and Paracetamol in Pharmaceutical formulation 20 µL 21 Paracetamol in Pharmaceutical formulation 22 Nt 4.6 mm, 5 µn Mobile phase: 1 % Glacial acetic acid: Acetonitrile (50: 50 %v/v). Flow rate: 1 mL/min Injection volume: 20 µL 20 µL 	24	Validated spectrophotometric Methods for Simultaneous Estimation of Paracetamol, Domperidoneand Tramadol HCl in pure and tablet dosage form	Solvent: 0.1N NaOH Linearity: 0-25 µg/mL Detection wavelength: Method I:Paracetamol :256 nm, Domperidone: 289.6 nm, <u>Tramadol</u> <u>hydrochloride:</u> 218.4 nm Method II: 200-400 nm	38
 26 Determination of Dexibuprofen and Tramadol HCL by simultaneous UV spectroscopic method from bulk and pharmaceutical dosage form and Validation of RP-HPLC method for Estimation of Tramadol in extended release tablet pharmaceutical dosage form 27 Development and validation of RP-HPLC method for Estimation of Tramadol in extended release tablet pharmaceutical dosage form 28 HPLC Determination and Validation of Tramadol Hydrochloride in Capsules 29 RP-HPLC Method for Estimation of Tramadol hydrochloride and Paracetamol in Pharmaceutical formulation 29 RP-HPLC Method for Estimation of Tramadol hydrochloride and Paracetamol in Pharmaceutical formulation 20 Determination Pharmaceutical dosage form 21 Determination Stationary phase: LiChrospher 100 CN. 22 RP-HPLC Method for Estimation of Tramadol hydrochloride and Paracetamol in Pharmaceutical formulation 23 RP-HPLC Method for Estimation of Tramadol hydrochloride and Paracetamol in Pharmaceutical formulation 23 RP-HPLC Method for Estimation of Tramadol hydrochloride and Paracetamol in Pharmaceutical formulation 24 Detection wavelength: 275 nm. 25 X 4.6 mm, 5 µm) 26 Size X 4.6 mm, 5 µm) 27 Size X 4.6 mm, 5 µm) 28 Stationary phase: 1 % Glacial acetic acid: Acetonitrile (50:50 % v/v). 29 Flow rate: 1 mL/min Injection volume: 20 µL 20 µL 21 Size X 4.6 mm, 5 µm) 22 Size X 4.6 mm, 5 µm) 23 Size X 4.6 mm, 5 µm) 24 Size X 4.6 mm, 5 µm) 25 Size X 4.6 mm, 5 µm) 26 Size X 4.6 mm, 5 µm) 27 Size X 4.6 mm, 5 µm) 28 Size X 4.6 mm, 5 µm) 29 Size X 4.6 mm, 5 µm) 20 µL 21 Size X 4.6 mm, 5 µm) 22 Size X 4.6 mm, 5 µm) 23 Size X 4.6 mm, 5 µm) 24 Size X 4.6 mm, 5 µm) 25 Size X 4.6 mm, 5 µm) 26 Size X 4.6 mm, 5 µm) 27 Size X 4.6 mm, 5 µm) 28 Size X 4.6 mm, 5 µm) 29 Size	25	Development and validation of UV Visible spectrophotometric method for estimation of Aceclofenac and Tramadol in bulk and dosage form	Solvent: Methanol Linearity: <u>Aceclofenac</u> : 2-25µg/mL <u>Tramadol</u> :2-10µg/mL Detection wavelength: <u>Aceclofenac</u> : 203 nm <u>Tramadol</u> : 241 nm	39
 27 Development and validation of RP-HPLC method for Estimation of Tramadol in extended release tablet pharmaceutical dosage form 28 HPLC Determination and Validation of Tramadol Hydrochloride in Capsules 29 RP-HPLC Method for Estimation of Tramadol hydrochloride and Paracetamol in Pharmaceutical 29 RP-HPLC Method for Estimation of Tramadol hydrochloride and Paracetamol in Pharmaceutical 29 RP-HPLC Method for Estimation of Tramadol hydrochloride and Paracetamol in Pharmaceutical 29 RP-HPLC Method for Estimation of Tramadol hydrochloride and Paracetamol in Pharmaceutical 29 RP-HPLC Method for Estimation of Tramadol hydrochloride and Paracetamol in Pharmaceutical 29 RP-HPLC Method for Estimation of Tramadol hydrochloride and Paracetamol in Pharmaceutical 20 Mobile phase: 1 % Glacial acetic acid: Acetonitrile (50:50 %v/v). Flow rate: 1 mL/min Injection volume: 20 µL 	26	Determination of Dexibuprofen and Tramadol HCL by simultaneous UV spectroscopic method from bulk and pharmaceutical dosage form	Solvent: Ethanol Linearity: Dexibuprofen:100-500µg/mL Tramadol:20-120µg/mL Detection wavelength: Dexibuprofen: 264nm Tramadol:271nm	40
 28 HPLC Determination and Validation of Tramadol Hydrochloride in Capsules 29 RP-HPLC Method for Estimation of Tramadol hydrochloride and Paracetamol in Pharmaceutical formulation 29 RP-HPLC Method for Estimation of Tramadol hydrochloride and Paracetamol in Pharmaceutical formulation 29 RP-HPLC Method for Estimation of Tramadol hydrochloride and Paracetamol in Pharmaceutical formulation 29 RP-HPLC Method for Estimation of Tramadol hydrochloride and Paracetamol in Pharmaceutical formulation 29 RP-HPLC Method for Estimation of Tramadol hydrochloride and Paracetamol in Pharmaceutical formulation 20 RP-HPLC Method for Estimation of Tramadol hydrochloride and Paracetamol in Pharmaceutical formulation 20 RP-HPLC Method for Estimation of Tramadol hydrochloride and Paracetamol in Pharmaceutical formulation 20 RP-HPLC Method for Estimation of Tramadol hydrochloride and Paracetamol in Pharmaceutical formulation 20 RP-HPLC Method for Estimation of Tramadol hydrochloride and Paracetamol in Pharmaceutical formulation 20 RP-HPLC Method for Estimation of Tramadol hydrochloride and Paracetamol in Pharmaceutical formulation 21 RP-HPLC Method for Estimation of Tramadol hydrochloride and Paracetamol in Pharmaceutical formulation 22 RP-HPLC Method for Estimation of Tramadol hydrochloride and Paracetamol in Pharmaceutical formulation 23 RP-HPLC Method for Estimation of Tramadol hydrochloride and Paracetamol in Pharmaceutical formulation 24 RP-HPLC Method for Estimation of Tramadol hydrochloride and Paracetamol in Pharmaceutical formulation 24 RP-HPLC Method for Estimation 25 RP-HPLC Method for Estimation 26 RP-HPLC Method for Estimation 27 RP-HPLC Method for Estimation 28 RP-HPLC Method for Estimation 29 RP-HPLC Method for Estimation 20 RP-HPLC Method for Estimation 20 RP-HPLC Method for Estimation 20 RP-HPLC Method fo	27	Development and validation of RP-HPLC method for Estimation of Tramadol in extended release tablet pharmaceutical dosage form	Stationary phase: Zorbax C18 (150 X 4.6 mm, 5 μ) Mobile phase:5mM Ammonium acetate buffer (pH 4.0 \pm 0.3): Acetonitrile (15: 85 %v/v). Flow rate: 0.8 mL/min Injection volume: 20 μ L Detection wavelength: 270 nm.	41
 29 RP-HPLC Method for Estimation of Tramadol hydrochloride and Paracetamol in Pharmaceutical formulation Stationary phase: C18G column 43 (250 x 4.6 mm, 5 μm) Mobile phase: 1 % Glacial acetic acid: Acetonitrile (50:50 % v/v). Flow rate: 1 mL/min Injection volume: 20 μL 	28	HPLC Determination and Validation of Tramadol Hydrochloride in Capsules	Stationary phase: LiChrospher 100 CN. Mobile phase: Acetonitrile: Ion pair solution (25:75) % v/v. Flow rate: 1 mL/min Injection volume: 20 μL Detection wavelength: 275 nm.	42
	29	RP-HPLC Method for Estimation of Tramadol hydrochloride and Paracetamol in Pharmaceutical formulation	Stationary phase:C18Gcolumn(250 x 4.6 mm, 5 μm)Mobile phase:1 %Glacial aceticacid:Acetonitrile (50:50 % v/v).Flow rate:1 mL/minInjection volume:20 μL	43

Detection wavelength: 272 nm. 30 RP -HPLC method development Stationary phase: Phenomenex luna 44 C-18 (250x4.6 mm,5µ) and validation of Tramadol hydrochloride in bulk form by Mobile phase: 20 mM Potassium dihydrogen phosphate:1.75mM 1ion-pair liquid chromatography Octane sulfonic acid sodium salt: 2% Isopropanol: Methanol (25:75 %v/v) pН 4.0 adjusted with Orthophosphoric acid Flow rate: 1 mL/min Detection wavelength: 272 nm Development and Validation of Stationary phase: C18 column 45 31 **RP-HPLC** (250×4.6 mm i.d., 5µm) Method for Simultaneous Estimation Mobile phase: 60:40 (%v/v) mixture of of 10 mM potassium dihydrogen Paracetamol and Tramadol Hydrochloride orthophosphate buffer (pH3): Acetonitrile Flow rate: 1 mL/min Injection volume: 20 µL Detection wavelength: 272 nm. 32 Application of HPLC for the Stationary phase: C18 column 46 Simultaneous Determination of (250×4.6 mm i.d., 5 µm particle size). Aceclofenac, Paracetamol and **Mobile phase:** 40: 60 (%v/v); Tramadol Hydrochloride Phosphate buffer (pH 6.0): Methanol. in Pharmaceutical Dosage Form Flow rate: 1 mL/min Injection volume: 20 µL Detection wavelength: 270 nm 33 Development and validation of Stationary phase: Phenomex 47 RP- HPLC method for Gemini C18 column (4.6 x 250 mm, the Simultaneous Estimation of 5µ particle size). hydrochloride phase: Tramadol Mobile Methanol: and Dicyclomine Acetonitrile: 0.1% Triethylamine in bulk and pharmaceutical formulation (TEA) pH 3.0 (adjusted with 35:5:60 Orthophosphoric acid) (% v/v/v).Flow rate: 1 mL/min Injection volume: 20 µL Detection wavelength: 275 nm. **RP-HPLC-method** development Stationary phase: Inertsil-ODS C18 34 **48** and validation for the (250 x 4.6 mm, 5). Estimation Mobile phase: Methanol: Buffer Simultaneous of Dexketoprofen Trometamol and (75:25) % v/v. Tramadol Flow rate: 1 mL/min Hydrochloride in pharmaceutical dosage form Injection volume: 20 µL Detection wavelength: 240 nm. 35 Simultaneous Estimation of Stationary phase: Phenomenex 49 Luna ODS C18 (150mm X 4.6 mm Diclofenac Sodium and Tramadol Hydrochloride Using i.d., 5µm; particle size). First phase: Derivative Spectroscopy and RP-Mobile Acetonitrile: Methanol: Phosphate buffer (pH 3) HPLC Method. (30:30:40) %v/v. Flow rate: 1 mL/min Injection volume: 20 µL

		Detection wavelength: 274 nm	
36	Stability-Indicating RP-HPLC Method for Analysis of Paracetamol and Tramadol in a Pharmaceutical Dosage Form	Stationary phase:Inertsil C18 (250mm x 4.6 mm, 5μm).Mobile phase:Orthophosphoricacid:Methanol (60:40, %v/v).Flow rate:1 mL/minInjection volume:20 μLDetection wavelength:228 nm	50
37	Development and Validation of HPTLC Method for Estimation of Tramadol HCl in Bulk and in Capsule Dosage Form	$\begin{array}{llllllllllllllllllllllllllllllllllll$	51
38	Development and validation of HPTLC method for simultaneous analysis of Tramadol HCl and paracetamol in fixed-dose combination tablets	Stationary phase: Silica gel 60 F_{254} Mobilephase:Chloroform:Methanol:Ethyl acetate (7.5 : 1.5 : $0.5)\% v/v$ Detection wavelength:254 nm R_f Value :Tramadol: 0.2 ± 0.03 Paracetamol: 0.4 ± 0.04	52
39	StabilityIndicatingHighPerformanceThinLayerChromatographicMethodfor theDeterminationofTramadolHydrochlorideinPharmaceuticalFormulationVariableVariable	$\begin{array}{c c} \textbf{Stationary phase: Silica gel 60 } F_{254} \\ \textbf{Mobile phase: Ethyl acetate:} \\ Methanol: Ammonia (9:0.8:0.5 \\ \% v/v/v). \\ \textbf{Detection wavelength: 271 } nm \\ \textbf{R_f Value:} 0.64 \pm 0.02 \\ \end{array}$	53

Sr. no	Ingredient	Quantity(mg)	Role
1	Sildenafil Citrate	50	API
2	Tramadol Hydrochloride	100	API
3	Microcrystalline cellulose	20	Disintegrate
4	Hydroxypropyl methyl cellulose	15	Binder

Table no.4 Formulation of synthetic mixture

II. CONCLUSION

This review describes the reported Spectroscopic and Chromatographic methods developedSildenafil citrate and Tramadol hydrochloride. As per this review, it was concluded that for sildenafil citrate and tramadol hydrochloride, different Spectroscopic and chromatographic methods are available for singlesingle drugs. It was observed that still, any combination method of sildenafil citrate and tramadol hydrochloride is not available. Thus, all methods were simple, accurate, economical, precise, and reproducible. Nearly all Methods were of RP-HPLC and UV absorbance detection because these methods provided with best available reliability, repeatability, analysis time, and sensitivity.

REFERNCES

- [1]. Gillman N & Gillman M, "Premature Ejaculation: Aetiology and Treatment Strategies." Med.sci.**2019**,7,12.
- [2]. Chris G. McMahon, "Premature Ejaculation." Ind J U.**2007**,97-104.
- [3]. Crowdis M, Nazir S. Premature Ejaculation. [Updated 2022 Jun 27]. In: Stat Pearls [Internet]. Treasure Island (FL): Stat Pearls Publishing; 2022 Bookshelf ID: NBK546701, PMID: 31536307
- [4]. Drug Profile of Sildenafil Citrate https://pubchem.ncbi.nlm.nih.gov/compou nd/Sildenafil-citrate
- [5]. Drug Profile of Tramadol Hydrochloride https://go.drugbank.com/salts/DBSALT00 0181
- [6]. United States Pharmacopeial Convention. Committee of Revision. The United States Pharmacopeia. United States Pharmacopeial Convention, Incorporated, USP44–NF39, Pharmacopeial Forum:**2021**,1.
- [7]. The British Pharmacopeia, The ministry of health, Labour and Welfare, ,**2020**,2,873.
- [8]. The Indian Pharmacopeia, Ministry of Health & Family Welfare ,**2018**,3,3189.
- [9]. The European Pharmacopeia, Convention on the Elaboration of a European Pharmacopoeia, Edition 10^{th,} ,**2017**,4,3786.
- [10]. United States Pharmacopeial Convention. Committee of Revision. The United States Pharmacopeia. United States Pharmacopeial Convention, Incorporated, USP44–NF39, Pharmacopeial Forum:2021,1.
- [11]. The Japanese Pharmacopoeia, The ministry of health, Labour and Welfare, English version, XVII Edition,1819.
- [12]. The British Pharmacopeia, The ministry of health, Labour and Welfare, **2020**,2,1180.
- [13]. The Indian Pharmacopeia, Ministry of Health & Family Welfare, **2018**,3,3410.
- [14]. The European Pharmacopeia, Convention on the Elaboration of a European Pharmacopoeia, volume 3 Edition 10th, 2019, 3786.
- [15]. Shrikrishna B, Pawar V etal, "Validation of Simple and Rapid UV-Spectrophotometric Method with Stress Degradation Study for Sildenafil

Citrate."Res J. Pharm. and Tech.2012, 5(2), 214-218.

- [16]. Tomar D, Kaushik P etal, "Development of Analytical Method and Its Validation for Sildenafil Citrate by UV-Spectrophotometry." Int. Res. J. Pharm. 2020.
- [17]. Gadiya H, Maheshwari M etal, "UV-Analytical Method Development and Validation for Simultaneous Estimation of Dapoxetine Hydrochloride and Sildenafil Citrate in Tablet Dosage Form." Asian j Pharm res (AJPS).2019,1(12).
- [18]. Mohammed A, Mohammed S etal, "Development and Validation Method for the Determination of Sildenafil Citrate Tablets by using UV-Spectrophotometer in Pharmaceutical Formulation." Ind J Biotech.2019,2(15).
- [19]. Kadam S, Kakade V etal, "Area Under Curve UV Spectrophotometric Method for Determination of Sildenafil Citrate in Bulk."BEPLS. June **2020**, 9[7].
- [20]. Yasmeen H. Muhamad, "A Simple Spectrophotometric Assay of Sildenafil in Pure and Pharmaceutical Preparations." ANJS. March, 2012,15(1),18-24.
- [21]. Sparsha. N, Reddy R et al, "Development of new and rapid method for UV spectrophotometric determination of sildenafil in marketed formulations." Scholars Research Library.**2012**, 4(6),1756-1759.
- [22]. Poposka Z, Shishovska M, "Validated HPLC method for determination of sildenafil in pharmaceutical dosage form."Institute for Public Health of the Republic of Macedonia. https://www.researchgate.net/publication/ 233998106_Validated_HPLC_method_for _determination_of_sildenafil_in_pharmac eutical_dosage_forms/link/0f3175376a033 4dd97000000/download
- [23]. MERIKAROVA M, BOZHANOV S etal, "HPLC Determination of Sildenafil in Tablets."Int. J. Appl. Pharm.**2021**,13(1).
- [24]. Tripathi A, Sheikh I etal, "Development and validation of RP-HPLC method for sildenafil citrate in rat plasma-application to pharmacokinetic studies." SPJ.**2013**, 317-321
- [25]. Sharma N, Rajput N etal, "RP-HPLC Method Development for Estimation of Sildenafil Citrate in Tablets and in

Seminal Fluid." J. Appl. Pharm. Sci.2012, 2 (5), 172-175.

- [26]. Kumar V, Yarkala S etal, "Analytical Method Development and Validation of Sildenafil Citrate by RP-HPLC." Res. J. Pharm.2012, 1.
- [27]. Sivakumar T and Girira P, "New Simple RP-HPLC Method for The Estimation of Sildenafil Citrate in Pharmaceutical Dosage Form."Int. J. Pharm. Sci.2014, 5(4).
- [28]. Reddy P, Reddy V etal, "Validation and Stability Indicating RP-HPLC Method for The Determination of Sildenafil Citrate in Pharmaceutical Formulations." Int. J. Pharm. Sci.2010,1(1),104-111.
- [29]. Bin Liew K and Khiang Peh K, "Stability indicating HPLC method for simultaneous quantification of sildenafil citrate and dapoxetine hydrochloride in Pharmaceutical products." Pak. J. Pharm. Sci.**2018**, 31, 2515-2522.
- [30]. Prajapati C, Patel B etal, "Development and Validation of HPTLC Method for Simultaneous Estimation of Sildenafil Citrate and Dapoxetine Hydrochloride in Combined Dosage Form." Pharma Tutor Magazine.2014,2(10),142-152.https://www.pharmatutor.org/pdf_do wnload/pdf/Vol.%202,%20Issue%2010,% 20October%202014,%20PharmaTutor,%2 0Paper-16.pdf
- [31]. Evangiline J, Reddy S, "Method development and validation of visible spectroscopic method for the estimation of tramadol hydrochloride in pure and bulk dosage form."J. Chem. Pharm. Res.**2015**, 7, 428-432.
- [32]. Say M, Bapat G etal, "Development of UV spectrophotometric methods and validation for estimation of tramadol hydrochloride in bulk and tablet dosage form by absorbance maxima and area under the curve method."J App Pharm.**2014**,6(2),210-216.
- [33]. Jhansi L, Panchumarthy R etal, "Validated UV spectrophotometric method for quantitative analysis of tramadol in bulk and pharmaceutical dosage form." Ind J Res Pha and Biotech.**2016**,4(1).
- [34]. Nidhi S and Chaudhary M, "Analytical Method Development and Validation of Tramadol Hydrochloride by Pharmaceutical Dosage Form by

Ultraviolet Spectroscopy." Open access j of pharma res.**2021**, 5(3).

- [35]. Chaudhari B, Rami R, "Validated Spectrophotometric Method for the Determination of Paracetamol and Tramadol Hydrochloride in Tablet dosage form."IJPDA.**2014**, 2(4).
- [36]. Lydia J, Boddu S, "UV Spectrophotometric Method for Simultaneous Estimation of Tramadol Hydrochloride and Aceclofenac In Bulk and Tablet Dosage Form." Int J Pharm Phar Sci.**2016**, 8(5).
- Chaudhari [37]. S. Tawani Κ etal. "Development and validation of UV spectrophotometric method for simultaneous estimation of Tramadol hydrochloride and Quercetin in niosomes formulation." Scholar Research Library.2015, 7 (5),205-210.
- [38]. Sawant R, Bhangale L etal, "Validated spectrophotometric methods for simultaneous estimation of Paracetamol, Domperidone and Tramadol HCl in pure and tablet dosage form." J. Chem. Metrol.**2010**, 4(1),21-27.
- [39]. Mali S, Ahmad S etal, "Development and Validation of UV Visible Spectrophotometric Method for Estimation of Aceclofenac and Tramadol in Bulk and Dosage Form." Int. J. Pharm. Sci.2018,9 (9).
- [40]. Pimple P, "Determination of Dexibuprofen and Tramadol HCL by Simultaneous UV Spectroscopic Method from Bulk and Pharmaceutical dosage form." Int. J. Pharm. Chem.**2020**, 10(2), 254-259.
- [41]. Kilaru N, Javvaji M etal, "Development and Validation of RP-HPLC Method for Estimation of Tramadol in Extended release Tablet Pharmaceutical dosage form." Int. J. Pharm. Biol sci.2018, 8(1),462-468.
- [42]. Kartinasari W Palupi T etal, "HPLC Determination and Validation of Tramadol Hydrochloride in Capsules." J. Liq. Chromatogr. Relat. Technol.**2004**, 27, 737–744.
- [43]. Kumar H, Kasi Krishna P etal, "RP-HPLC method for estimation of tramadol hydrochloride and paracetamol in pharmaceutical formulation." GSC Biolo Pharma Sci.**2019**, 8(1),089–097.

- [44]. Sinha M, Verma V, "RP-HPLC method Development and Validation of Tramadol hydrochloride in bulk form by ion-pair liquid chromatography." JDDT.**2014**, 4(1), 63-65.
- [45]. Thomas S, Poomali A, "Development and Validation of RP-HPLC Method for Simultaneous Estimation of Paracetamol and Tramadol Hydrochloride." IJJP.2016,3(4),169-172.
- [46]. CHANDRA P, RATHORE A etal, "Application of HPLC for the Simultaneous Determination of Aceclofenac, Paracetamol and Tramadol Hydrochloride in Pharmaceutical Dosage Form." Sci Pharm. **2012**, 80, 337–351.
- [47]. DONDA S, BAVISKAR V etal, "Development and Validation of RP-HPLC Method for the Simultaneous Estimation of Tramadol hydrochloride and Dicyclomine in bulk and pharmaceutical formulation." J. Chil. Chem. Soc. **2016**, 61, 2852-2855.
- [48]. Susmitha P, Hemasri M etal, "RP-HPLC-Method Development and Validation for the Simultaneous Estimation of Dexketoprofen trometamol and Tramadol hydrochloride in Pharmaceutical dosage form."Int. J. Curr. Pharm.**2022**, 14(4).

- [49]. Mondal A, Chandra P etal, "Simultaneous Estimation of Diclofenac Sodium and Tramadol Hydrochloride Using First Derivative Spectroscopy and RP-HPLC Method." A Sci Pharma Sci.2021, 5(1).
- [50]. Kamble R AND Shrawan G, "Stability-Indicating RP-HPLC Method for Analysis of Paracetamol and Tramadol in a Pharmaceutical Dosage Form." E-J Che.**2012**, 9(3),1347-1356.
- [51]. Desai P, Captain A etal, "Development and Validation of HPTLC Method for Estimation of Tramadol HCl in Bulk and in Capsule Dosage Form." Int. J. Pharmtech Res. 2012, 4(3),1261-126.
- [52]. Patila V, Kawdea, R etal, "Development and validation of HPTLC method for simultaneous analysis of Tramadol HCl and paracetamol in fixed-dose combination tablets." J. Indian Chem. Soc.**2013**,90,745-750.
- [53]. Dhumal B, Kishore P. Bhusari etal, "Stability Indicating High Performance Thin Layer Chromatographic Method for the Determination of Tramadol Hydrochloride in Pharmaceutical Formulation.", 2015 http://dx.doi.org/10.1080/10826076.2015. 1020167.